SWANSON SCHOOL OF ENGINEERING UNIVERSITY OF PITTSBURGH

Pitt

COLLAGEN-MIMETIC HYDROGEL MATRICES RECAPITULATE MALIGNANT AND NON-MALIGNANT

¹ University of Pittsburgh, Department of Bioengineering, ² University of Pittsburgh, School of Pharmacy, ³ McGowan Institute for Regenerative Medicine, ⁴UPMC-Hillman Cancer Center, University of Pittsburgh, PA, 15219, USA.

Introduction

- Early diagnosis and histological characteristics help manage treatment and improve patient outcomes in breast cancer [1].
- **Microcalcifications**: insoluble deposits of calcium minerals; considered a hallmark of ductal carcinoma in situ (DCIS)[2].
 - **Type 1** (calcium oxalate, benign tumors)
 - **Type II** (calcium phosphate, hydroxyapatite, malignant tumors)
- Hydrogel matrices: aligned fibrous structure and hierarchy of collagen, an extracellular matrix protein found in cancer cell invasion.
- Material characteristics must be understood to understand the role of the microcalcifications in disease progression

Hypothesis

Incubation of hydrogel matrices in phosphate and oxalate buffer will result in increasing deposition of type I and type II minerals over a period of ten days.

Assembly in microfluidic chamber

Scaffold is incubated for 3, 7, and 10 days in calcium oxalate or calcium phosphate (Simulate Body Fluid).

Mineral Characterization

- X-Ray Diffraction (XRD)
- Fourier Transform Infrared Spectroscopy

MINERAL DEPOSITION Nithya Narayanan¹, Akhil Patel², and Shilpa Sant^{1,2,3,4}

